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1 Setup

Throughout today, K be a p-adic field; namely, a characteristic-0 field that is complete with
respect to a fixed discrete valuation, whose residue field k is perfect of characteristic p. For
example, K can be any finite extension of Qp, or the completion of Qur

p . It cannot be Qp or
Cp, as these are not discretely valued (and the former is not complete).

Set GK = Gal(K/K) and CK = K̂. We are interested in studying the category RepQp
(GK) of

finite-dimensional Qp-representations of GK , but we will soon tensor these up to (semilinear)
CK-representations of GK . Unless otherwise specified, all representations, Galois cohomology,
etc. that we discuss today will be implicitly continuous.

Let Zp(1) = lim←n µpn(K), which is a free Zp-module of rank 1 equipped with a natural GK-
action. If we fix a basis of Zp(1), we can view it as Zp with a character χ : GK → Z×p ; χ is
called the cyclotomic character. Then we let Zp(r) = Zp(1)⊗r, Qp(r) = Qp⊗Zp Zp(r), and so
on.

2 CK-representations

The Qp-representations of GK we care about, most notably those coming from étale cohomology,
are very difficult to understand. But as Brinon and Conrad explain, “they become much simpler
after we apply the drastic operation V 7→ CK ⊗Qp

V ”, where GK acts on both sides of the tensor
product. Note in particular that this GK-action is not CK-linear; rather, it is CK-semilinear,
in the sense that g(cv) = g(c)g(v) for c ∈ CK and v ∈ V .

Definition 2.1. A CK-representation of GK is a finite-dimensional CK-vector space W equipped
with a continuous GK-action such that g(cw) = g(c)g(w) for all c ∈ CK and w ∈ W . The
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category of CK-representations of GK (with CK-linear GK-equivariant morphisms) is called
RepCK

(GK).

Facts: RepCK
(GK) is an abelian category with reasonable notions of ⊕, ⊗, duals, and

exactness. (Be careful when dealing with semilinearity.) Extension of scalars gives an exact
functor RepQp

(GK)→ RepCK
(GK).

Theorem 2.2. (Faltings) If K is a p-adic field and X is a smooth proper K-scheme, there is
a canonical isomorphism

CK ⊗Qp
Hn

ét(XK ,Qp) ≡
⊕
q

(
CK(−q)⊗K Hn−q(X,Ωq

X/K)
)
. (1)

(The Hodge cohomology groups on the right are just K-vector spaces; they do not have a Ga-
lois action. So we could rewrite the right-hand side slightly less canonically as

⊕
q CK(−q)hn−q,q

.)
This is closely analogous to the classical Hodge decomposition for the de Rham cohomology
of compact Kähler manifolds. It tells us in particular that the p-adic étale cohomology of X
recovers its Hodge numbers, and the Hodge numbers recover the étale cohomology but only
after base-changing up to CK . Also note that you really do need to tensor up to CK in Faltings’
theorem, not just K. (Brinon and Conrad’s Example 2.2.4 justifies this precisely.)

Theorem 2.3. (Tate-Sen) For r ∈ Z, the GK-invariants (equivalently, zeroth continuous Galois
cohomology) of CK(r) are K if r = 0 and 0 otherwise. Similarly, H1

cont(GK ,CK(r)) is trivial if
r 6= 0 and 1-dimensional over K if r = 0.

There exists a version of this for much more general characters η replacing χr, but we won’t
be concerned with this. Note that the first part of this statement says concretely that CK

has no transcendental GK-invariants, and it has no nonzero elements on which GK acts by the
character χ−r for r 6= 0. One reason we care about (continuous) Galois cohomology is that
H1

cont(GK ,W ) classifies extensions 0→ W → W ′ → CK → 0.

3 Hodge-Tate representations

The Hodge-Tate property is the first and weakest “niceness” property in p-adic Hodge theory,
followed by de Rham, semistable, and crystalline. Let’s start with a preliminary definition:

Definition 3.1. A representation W in RepCK
(GK) is Hodge-Tate if W is isomorphic to a

(necessarily finite) direct sum of representations of the form CK(−q), for some choices of q.
We say an object in RepQp

(GK) is Hodge-Tate if its base change to CK is. In either case, the
Hodge-Tate numbers are the numbers q that appear in the decomposition, with their respective
multiplicities.

This definition is a little dissatisfying, because it relies on a non-canonical decomposition.
(For example, it is not immediately obvious from the definition that Hodge-Tate weights are
well-defined.) Faltings’ theorem is a nicer statement: it says that the CK-representations of
GK coming from geometry can be identified canonically as W ≡ ⊕qCK(−q)⊗KW{q} for some
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K-vector spaces W{q}. This implies that W is Hodge-Tate with the multiplicity of each Hodge-
Tate weight q equal to the Hodge number hn−q,q, but it’s better, since this equality comes from
a canonical (not just abstract) isomorphism of vector spaces. We would like to redefine Hodge-
Tate representations in a way that identifies these W{q} canonically.

Recall from the theorem of Tate-Sen that the ring of invariants CGK
K is just K, and that

CK(−q)GK is 0 for q 6= 0. This allows us to canonically identify the “CK(−q)-piece” of a
CK-representation for each q: let W{q} = W (q)GK . Then if W is Hodge-Tate, W{q} will be a
K-vector space whose dimension equals the multiplicity of the Hodge-Tate weight q. Moreover,
W{q} makes sense for representations that are not Hodge-Tate, which allows us to redefine
Hodge-Tate as follows.

Definitions and Lemma 3.2. For any CK-representation of GK, let ξW :
⊕

q CK(−q) ⊗K
W{q} → W be the map built from the pieces

CK(−q)⊗K W{q} ↪→ CK(−q)⊗K W (q) � CK(−q)⊗CK
W (q) = W (2)

This is a morphism in RepCK
(GK), and it is always an injection. (This is a lemma of Serre

and Tate, proved by infinite descent on the number of simple tensors in a counterexample.) We
redefine a Hodge-Tate representation to be any object W in RepCK

(GK) such that ξW is an
isomorphism. The other definitions above proceed similarly; for example, the multiplicity of a
Hodge-Tate weight q is the K-dimension of W{q}.

We now consider a category that we will show is equivalent to the category of Hodge-Tate
CK-representations of GK :

Definition 3.3. Let GrK,f be the abelian category of finite-dimensional graded vector spaces
over K, with morphisms preserving degrees. We define the functor D = DHT from RepCK

(GK)
to GrK,f by D(W ) = (BHT ⊗CK

W )GK , where the grading on the output comes from the grading
on BHT .

Example: if W is the Hodge-Tate representation CK(1)⊕ CK(2)⊕2, then we have

BHT ⊗W =
⊕
q∈Z

(CK(q + 1)⊕ CK(q + 2)⊕2), (3)

so D(W ) = K〈−1〉 ⊕ K⊕2〈−2〉; that is, it has a copy of K in the (−1)st graded piece and a
copy of K⊕2 in the (−2)nd graded piece.

One observes easily that D is left-exact, but it is not right-exact in general. However, a cute
argument shows the following.

Proposition 3.4. Given a short exact sequence 0 → W ′ → W → W ′′ → 0, if W is Hodge-
Tate, then W ′ and W ′′ are. (The converse is false.) Moreover, applying D to such a short
exact sequence yields a short exact sequence in GrK,f .

Proposition 3.5. The Hodge-Tate property is insensitive to finite and inertial extensions.
Namely, for W in RepCK

(GK) and K ′/K finite, W is Hodge-Tate if and only if it is Hodge-
Tate in RepCK

(GK′), if and only if it is Hodge-Tate in RepCK
(IK), where IK = GK̂ur .
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Now we will introduce a ring that will allow us to repackage much of the preceding discussion
into a nice equivalence of categories.

Definition 3.6. Let BHT be the ring
⊕

q∈ZCK(q), with multiplication sending CK(q)×CK(q′)
to CK(q + q′). This has several types of structure: CK-vector space, grading, GK-action, ring
structure, (topology—do we still care about this?), and they are compatible in the expected ways.
Note that if we choose a (non-canonical) generator t of Zp(1), then BHT = CK [t±1].

Now we construct a functor V from GrK,f back to RepCK
(GK) that will be a (sometimes)

quasi-inverse to D.

Definition 3.7. For D in GrK,f , let V (D) = gr0(BHT ⊗K D), where the grading is by the sum
of the gradings on the two tensor factors.

In our example from earlier, D = K〈−1〉 ⊕K⊕2〈−2〉, we get

BHT ⊗K D =
⊕
q∈Z

(
CK(q)〈q − 1〉 ⊕ CK(q)⊕2〈q − 2〉

)
, (4)

so V (D) = gr0(BHT ⊗K D) = CK(1) ⊕ CK(2)⊕2. This is great: we recovered an entire CK-
representation from a finite-dimensional graded K-vector space. This makes the following
theorem very unsurprising.

Definition 3.8. The functors D and V given an equivalence of categories between the Hodge-
Tate representations in RepCK

(GK) and GrK,f , which behaves well under tensor products and
duals.

In fact, the isomorphism V (D(W )) → W for W Hodge-Tate can be realized as the zeroth
graded component of the following comparison morphism:

γW : BHT ⊗K D(W )→ BHT ⊗K (BHT ⊗CK
W )→ BHT ⊗CK

W. (5)

(Here we use the multiplication map BHT ⊗K BHT → BHT .) Note that this morphism makes
sense for any W . It is always a Galois-equivariant injection, respecting gradings, and it is an
isomorphism if and only if W is Hodge-Tate.

Note that the preceding equivalence of categories is only valid when the source consists of CK-
representations, not Qp-representations. The corresponding functor from RepHT (GK) (Hodge-
Tate representations over Qp) to GrK,f is not fully faithful, because tensoring up to CK loses a lot
of finer information. For example, if η is a character with finite image, then (BHT ⊗Qp

Qp(η))GK

is isomorphic to (BHT ⊗Qp
Qp)

GK = K〈0〉. So we want to construct a ring, some functors, and
a class of nice representations that will be finer than what we have done so far. These will
necessary depend on the structure of a Qp-representation, rather than a CK-representation.

4 Period ring formalism

Many of the constructions of the previous section work in much greater generality, and it is
useful to record them as a formalism that can then be applied for de Rham, semistable, and
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crystalline representations.

Let F be a field, G a group, and B an F -algebra that is a domain, equipped with a G-action
that respects its F -algebra structure. (Think of F as Qp, G as GK , and B as BHT .) Assume
that the invariant subalgebra E = BG is a field (e.g. K). Let C = FracB, which naturally gets
a G-action. Note that none of these objects are assumed to have a topology.

Definition 4.1. We say B is (F,G)-regular if CG = BG and if every nonzero b ∈ B whose
F -span is G-stable is a unit in B.

Example: if F = Qp, G = GK , and B = BHT as above, then one can check that the only
invariants in C = FracBHT are the “scalars” K〈0〉, and the only Qp-lines in BHT preserved by
GK are the direct summands CK(q) of BHT , which are spanned by units.

For each (F,G)-regular ring B, we get a comparison morphism and a corresponding class
of “nice” representations, as follows.

Definition 4.2. If B is (F,G)-regular and V is a finite-dimensional F -representation of G,
set DB(V ) = (B ⊗F V )G, and consider the comparison morphism

αV : B ⊗E DB(V )→ B ⊗E (B ⊗F V ) = (B ⊗E B)⊗F V → B ⊗F V. (6)

This is always a B-linear G-equivariant injection, and we say that V is B-admissible if αV is
an isomorphism.

Theorem 4.3. If RepBF (G) denotes the full subcategory of B-admissible representations, then
the functor DB : RepBF (G)→ VecE (the category of finite-dimensional E-vector spaces) is exact
and faithful, and B-admissible representations are closed under subquotients, tensor products,
and duals. Moreover, DB behaves well under tensor products and duals.

5 de Rham representations

The Hodge-Tate property is a good first step towards measuring niceness of p-adic representa-
tions, but we want to develop some stronger conditions, capable of detecting finer data. We
will look to improve it by upgrading from graded vector spaces to filtered vector spaces.

A de Rham representation in RepQp
(GK) (not RepCK

(GK)) will be a BdR-admissible repre-
sentation, where BdR is a field to be defined. Once we define it, it will be true that de Rham
representations are Hodge-Tate. Moreover, BdR will come with a filtration; taking associated
graded objects will turn BdR into BHT , and will turn DdR(V ) into DHT (V ) when V is de Rham.

Let’s construct BdR. We start with some objects that came up in my perfectoid space talk
last month. Let OCK

be the ring of integers of CK , and consider the Fp-algebra OCK
/(p). This

isn’t a very nice ring, since it has tons of nilpotents, but we can make it nicer by taking its
inverse limit along the Frobenius map: O[CK

= lim←ϕOCK
/(p). This is the tilt, in the sense of

perfectoid spaces; O[CK
is a perfect Fp-algebra and an integral domain, and its fraction field is
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algebraically closed by the tilting equivalence.

Next, we take the Witt vectors W (O[CK
). This produces the p-adic period ring Ainf . We

then get a map θ : Ainf → OCK
, defined either by an explicit formula or by some adjunction

property, that fits into a commutative square

Ainf
θ //

��

OCK

��
O[CK

// OCK
/(p)

where the bottom map is the projection onto the last term in the inverse limit, and the ver-
tical maps are modding out by p. Note that p = 0 in the bottom row here, but p is merely
topologically nilpotent in the top row. We then adjoint 1/p to the top row, yielding a map
θQ : Ainf [1/p]→ OCK

[1/p] = CK .

It turns out that ker θQ (and ever ker θ) is a principal ideal generated by an element ξ = p− [p].

(Here, p is the element (. . . , p1/p
2
, p1/p, p) ∈ O[CK

= lim←ϕOCK
/(p), for some fixed choice of

compatible p-power roots, and [p] is its Teichmüller lift to Ainf .) We set B+
dR to be the (ker θQ)-

adic completion of Ainf [1/p], and BdR = FracB+
dR.

Some things that can be checked: B+
dR is a complete DVR with residue field CK , where the

maximal ideal is B+
dR ·ker θQ. This gives an exhaustive and separated filtration of BdR by filtered

pieces mnB+
dR, for n ∈ Z. Both B+

dR and BdR have natural Galois actions by tracing through
each step of the construction, and the Galois action respects the filtration. The associated
graded algebra of BdR is isomorphic to BHT , compatibly with Galois action.
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